Caractérisation de la solution solide $In_{1-x}Li_{3x}VO_4$ ($0 < x \le 0,4$) dans le système $InVO_4-Li_3VO_4$ et examen des systèmes $CrVO_4-Li_3VO_4$ et $InVO_4-CrVO_4$

MARCEL TOUBOUL ET AGNÈS POPOT

Laboratoire de Chimie Structurale des matériaux, Université Pierre et Marie Curie, 4, Place Jussieu (Bât. F), 75230 Paris Cedex 05, France

Received October 1, 1985; in revised form December 30, 1985

In the InVO₄-Li₃VO₄ system, a continuous solid solution $In_{1-x}Li_a^{(6)}\Box_1^{(6)}Li_c^{(-)}\Box_d^{(6)}VO_4$ exists between InVO₄ and $In_{0.6}Li_{1.2}VO_4$, with a + b = x, c + d = 1, and a + c = 3x. The solid solution is of two types: in the first, $0 < x \le 0.33$, a = 0, interstitial Li⁺ ions are in the vacant tetrahedral sites of InVO₄; in the second, $0.33 < x \le 0.4$, c = 1, Li⁺ ions are also in the octahedral sites vacated by In^{3+} . The ionic conductivity measured for some compositions is weak, 10^{-7} (Ω cm)⁻¹ at 493 K. Solid solution has not been found between CrVO₄ and Li₃VO₄, although CrVO₄ is isostructural with InVO₄. Mutual solid solution between CrVO₄ and InVO₄ is extremely limited. Yellow and weakly hygroscopic monocrystals have been synthetized for $R_2Li_3(VO_4)_3$ compositions (R = In, Cr, Fe); their chemical formula can be symbolized by LiVO₃: R^{3+} . The R^{3+} percentage was too low to be detected by analysis of electronic densities based on X-ray diffraction intensities. \oplus 1986 Academic Press, Inc.

Dans le système InVO₄-Li₃VO₄, une solution solide continue In_{1-x}Li_a^(b)□_b^(d)Li_c^(d)U₀^(d)VO₄ a été mise en évidence entre InVO₄ et In_{0.6}Li_{1.2}VO₄, avec a + b = x, c + d = 1, et a + c = 3x; elle est partagée en deux zones; il y a seulement insertion de lithium dans les sites tétraédriques vacants de InVO₄ pour $0 < x \le 0,33$ et a = 0; le lithium occupe en outre des sites octaédriques abandonnés par l'indium pour 0,33 $< x \le 0,4$ et c = 1. La conductivité ionique de ces mixtes est faible, de l'ordre de 10^{-7} (Ω cm)⁻¹ à 493 K. Aucune solution solide analogue n'a été trouvée dans le système CrVO₄ et Li₃VO₄ bien que CrVO₄ soit isostructural de InVO₄; à l'état solide, ces deux composés sont d'ailleurs peu solubles l'un dans l'autre. Des monocristaux jaunes, peu hygroscopiques, ont été obtenus pour la composition R_2 Li₃(VO₄)₃ (R =In,Cr,Fe); ils peuvent être symbolisés par la formule LiVO₃: R^{3+} ; la teneur en R^{3+} est trop faible pour être détectée par analyse des densités électroniques basée sur les mesures des intensités diffractées aux rayons X. © 1986 Academic Press, Inc.

Les composés oxygénés du lithium sont très étudiés en raison, notamment, de leur utilisation éventuelle comme électrolytes solides ($1 \ge 8$). Dans une précédente publication (9), un vanadate mixte In_{0,6}Li_{1,2}VO₄ a été synthétisé à partir de InVO₄¹ et Li₃VO₄²; sa structure lacunaire, très proche de celle de InVO₄ (14), comporte un réseau tridimensionnel d'octaèdres (In,Li)O₆ et de tétraèdres VO₄ avec occupation partielle de sites tétraédriques par des ions Li⁺ (Fig. 1). L'objet principal de ce mémoire est de délimiter la zone d'existence de la solution solide In_{1-x}Li_{3x}VO₄ dans le pseudo-binaire InVO₄-Li₃VO₄ et de mesurer la conductivité ionique de quelques mélanges. Alors que CrVO₄ (15) est isotype et isostructural

¹ Seule la variété III (10) intervient dans cette étude.

² Forme β_{II} (11–13).

FIG. 1. Structure en projection de In_{0,6}Li_{1,2}VO₄.

de InVO₄, un composé $CrLi_3(VO_4)_2$, de structure spinelle, a été signalé (16, 17); aussi l'examen des mixtes du système $CrVO_4$ - Li_3VO_4 a-t-il été entrepris et devant les résultats obtenus, une étude sommaire du système InVO₄- $CrVO_4$ a été réalisée.

Partie expérimentale

Les échantillons ont été préparés soit à partir de carbonate de lithium et des oxydes V_2O_5 et R_2O_3 , soit à partir de RVO_4 (R =In,Cr) (10, 18) et Li₃VO₄ (11, 18). Alors que ce dernier composé est à fusion congruente à 1050°C (12), $InVO_4$ et $CrVO_4$ sont à fusion non congruente à 1134 (10) et 880°C (19). L'étude complète des systèmes par analyse thermique se révélant très complexe, des expériences ont été réalisées sur quelques mixtes afin de déterminer les températures permettant l'obtention d'une part de monocristaux et d'autre part de mélanges homogènes (deux phases au maximum). L'analyse par diffraction X des poudres et des monocristaux a été le principal outil de ce travail; les techniques classiques de la radiocristallographie ont été utilisées avec notamment un diffractomètre Théta 60 équipé d'un tube au cuivre ($\lambda K\alpha = 1,54178$ Å) et un diffractomètre quatre cercles Philips PW 1100 utilisant la radiation $K\alpha$ du molybdène ($\lambda = 0,71069$ Å).

Résultats et discussion

(1) Monocristaux rencontrés dans le système InVO₄-Li₃VO₄

Les échantillons placés dans un creuset de platine sont maintenus à 800°C pendant 10 heures puis refroidis lentement; dans la masse hétérogène obtenue, des monocristaux peuvent être extraits. A partir de mélanges de composition comprise entre In_{0.6} $Li_{1,2}VO_4$ et Li_3VO_4 (Fig. 2), seuls des monocristaux de ces deux composés ont été obtenus (Tableau I). Par contre, lorsque la teneur en InVO₄ est plus importante que dans In_{0.6}Li_{1.2}VO₄, divers monocristaux blancs mats ou transparents rayés rouge se forment; leurs paramètres cristallins sont très proches de ceux de InVO₄ (Tableau I). Aucune étude structurale n'a pu être entreprise en raison de la mauvaise qualité des monocristaux qui semblent tous mâclés.

Dans la composition $InVO_4/Li_3VO_4 = 2$

FIG. 2. Système ternaire V₂O₅-In₂O₃-Li₂O (pourcentages pondéraux).

correspondant à un mélange situé au point d'intersection des lignes $InVO_4-Li_3VO_4$ et $In_2O_3-LiVO_3$ (Fig. 2), des monocristaux jaune pâle et très peu hygroscopiques ont été obtenus; leurs caractéristiques cristallographiques (Tableau I) sont voisines de celles de LiVO₃ (20), dont les cristaux sont incolores et très hygroscopiques. Avec Cr et Fe, des monocristaux de maille et propriétés comparables ont été obtenus; ce résultat sera discuté plus loin.

(2) Poudres homogènes dans le système InVO₄-Li₃VO₄

Les échantillons sont recuits à 580°C pendant 48 heures; ce traitement est répété après broyage. L'analyse par diffraction X des poudres révèle deux zones:

(a) Au delà de la composition $In_{0,6}$ Li_{1,2}VO₄, vers les fortes concentrations en Li₃VO₄, existe un domaine biphasé constitué de $In_{0,6}Li_{1,2}VO_4$ et Li₃VO₄; l'intensité des raies de diffraction est proportionnelle à la composition du mélange.

(b) De InVO₄ à In_{0,6}Li_{1,2}VO₄, les raies de diffraction X propres à InVO₄ (14) se déplacent progressivement pour aboutir au diagramme de poudre de In_{0,6}Li_{1,2}VO₄ (Tableau II). Cette zone constitue le domaine monophasé de la solution solide continue $In_{1-x}Li_{3x}VO_4$ ($0 < x \le 0,4$) dont les limites sont donc $InVO_4$ et $In_{0,6}Li_{1,2}VO_4$ où la teneur en lithium semble être le maximum autorisé par la structure type $InVO_4$. Afin de caractériser cette solution solide, la Fig. 3 représente la variation en θ ($\lambda CuK\alpha$), de la raie de diffraction X la plus intense du spectre de poudre des mélanges étudiés en

FIG. 3. Variation de l'angle θ (λ CuK α). \blacktriangle : Domaine biphasé: In_{0.6}Li_{1.2}VO₄ et Li₃VO₄; O: Domaine monophasé de solution solide continue In_{1-x}Li_{3x}VO₄ entre InVO₄ et In_{0.6}Li_{1.2}VO₄ (\bigcirc); \blacksquare : Mélange P (3,1% Li).

Système	Aspect physique Données cristallographiques			
InVO ₄ -Li ₃ VO ₄	d'espace	Structure		
InVO4	Cristaux rouges a = 5,765 b = 8,542 Cmcm c = 6,592 Mélangc hétérogène cristaux blancs mats a = 5,93	Édifice tridimensionnel de tétraèdres VO ₄ et d'octaèdres InO ₆ (14)		
P ₁	b = 8,61 Cmcm c = 6,70	Cristaux mâclés		
(91% InVO ₄ -9% Li ₃ VO ₄)	cristaux transparents rayés rouge a = 5.775 b = 8.565 Cmcm a = 6.20			
$InVO_4/Li_3VO_4 = 2$	e – 6,620 Mélange hétérogène			
ou In ₂ Li ₃ (VO ₄)3	Poudre: In_2O_3 cristaux jaunes a = 10,17 $b = 8,43$ $\beta = 110,70^\circ$ c = 5,89 C2/c	LiVO ₃ : In^{3+} structure de LiVO ₃ formée de chaînes infinies de VO ₄ et d'octaèdres LiO ₆ (20) <i>a</i> = 10,158 Å, <i>b</i> = 8,4175 Å, <i>c</i> = 5,8853 Å, <i>β</i> = 110,48°, C2/c		
In _{0.6} Li _{1.2} VO ₄	Cristaux blancs a = 5,749(1) b = 8,726(2) Cmcm c = 6,373(2)	Structure equivalente a celle de $\ln VO_4$ où Li ⁺ , simultanément, s'insère dans des sites tétraédriques et substitue partiellement $\ln^{3+}(9)$		
Li ₃ VO4	Cristaux blancs transparents a = 6,319 b = 5,448 Pmn2 ₁ c = 4,940	Structure formée d'enchaînements de tétraèdres VO ₄ et LiO ₄ (11, 13, 18)		

TABLEAU I Résultats de l'Étude à 800°C du Système InVO4–Li3VO4

fonction de leurs compositions exprimées en pourcentage en lithium; deux droites sont mises en évidence qui concourent au mélange P de formule approximative $In_{0,7}$ $Li_{0,9}VO_4$. Afin de tenter de trouver une explication structurale à ce changement de pente, il faut rappeler les trois hypothèses émises quant à la répartition du lithium dans la structure de $In_{0,6}Li_{1,2}VO_4$ (9) qui

peut être symbolisée par la formule générale $In_{0,6}Li_a^{(6)}\Box_b^{(6)}Li_c^{(4)}\Box_d^{(4)}VO_4$; les conditions structurales correspondant aux positions 4(a) et 4(c) du groupe Cmcm imposent respectivement 0.6 + a + b = 1 et c + d =1; en outre a + c = 1.2 ce qui entraîne b + d= 0,2. Ainsi lorsque *b* ou *d* est égal à zéro, un seul type de lacune subsiste, octaédrique ou tétraédrique; les deux sortes de lacunes coexistent quand b et d sont différents de zéro. Dans tous les cas, pour $In_{0.6}Li_{1.2}VO_4$, Li^+ substitue partiellement In³⁺ et s'insère dans des sites tétraédriques. Le mélange P, correspondant à $In_{0.7}$ $Li_{0.9}VO_4$, répond à la formule symbolique $In_{0.7}Li_a^{(6)} \Box_b^{(6)}Li_c^{(4)} \Box_d^{(4)}VO_4 \text{ avec } a + b = 0,3, c$ + d = 1 et a + c = 0.9 d'où b + d = 0.4. Compte tenu de la faible teneur en Li, d est nécessairement différent de zéro, ce qui conduit aux hypothèses structurales suivantes:

Quand b = 0, $In_{0,7}Li_{0,3}^{(6)}Li_{0,6}^{(4)}\Box_{0,4}^{(4)}VO_4$; toutes les lacunes sont dans les sites tétraédriques; la charpente de tétraèdres VO_4 et d'octaèdres (In, Li)O₆ est complète.

Quand a, b, c, et $d \neq 0$, par exemple

TABLEAU II Diagramme de Poudre de In_{0.6}Li_{1.2}VO₄

Δ2θ (°)	h k l	d exp (Å)	I/I ₀	2 θ exp (°)
0,00	110	4,80	38	18,48
+0,02	020	4,36	34	20,37
+0,02	111	3,83	50	23,22
0,00	021	3,60	33	24,73
-0,01	200	2,876	46	31,10
+0,04	112	2,652	100	33,80
-0,01	130	2,596	61	34,55
+0,02	221	2,245	05	40,16
-0,01	040	2,182	10	41,38
-0,03	202	2,136	21	42,31
0,00	222	1,917	24	47,42
0,00	042	1,800	18	50,71
0,00	150	1,670	02	54,98
0,00	312	1,614	16	57,06
+0,02	330	1,600	09	57,61
-0,01	223	1,591	09	57,96
-0,01	242	1,526	35	60,69

In_{0,7}Li $_{0,1}^{(6)}\square_{0,2}^{(6)}Li_{0,8}^{(4)}\square_{0,2}^{(4)}VO_4$, le lithium se place dans les deux types de site.

Quand a = 0, $In_{0,7}\square_{0,3}^{(6)}Li_{0,5}^{(4)}\square_{0,1}^{(4)}VO_4$, bien que des lacunes coexistent dans les deux types de site, tout le lithium est uniquement en insertion. Cette dernière hypothèse est la seule qui soit en accord avec le changement de pente en P (Fig. 3); ainsi en partant de InVO₄, le lithium n'occupe que les positions tétraédriques interstitielles; lorsque ces dernières sont totalement garnies la formule de la solution solide est In_{0,67}Li_{0,99}VO₄ ce qui correspond à la formule précise de P; au delà de cette composition et jusqu'à In_{0,6}Li_{1,2}VO₄ le lithium excédentaire se place dans une partie des sites octaédriques abandonnés par In³⁺.

Le domaine de la solution solide rencontrée dans le système $InVO_4-Li_3VO_4$ correspond donc à la formule $In_{1-x}Li_a^{(6)}\square_b^{(6)}$ $Li_c^{(4)}UO_4$ avec a + b = x, c + d = 1, et a + c = 3x; il est partagé en deux zones avec $0 < x \le 0.33$ et a = 0 pour la première et $0.33 < x \le 0.4$ et c = 1 pour la seconde; le changement de pente en P, observé Fig. 3, est dû au passage insertion de lithium à insertion et substitution.

Des mesures de conductivité ionique ont été réalisées sur différents mélanges appartenant à cette zone de solution solide, à plusieurs températures; elles conduisent à des valeurs faibles de l'ordre de 10^{-7} $(\Omega \text{ cm})^{-1}$ à 493 K (18), bien inférieures, par exemple, à celles du "Lisicon" (Li_{3,5}Zn_{0,25}GeO₄) qui est de 0,13 ($\Omega \text{ cm}$)⁻¹ à 573 K (21).

(3) Etude des mixtes CrVO₄-Li₃VO₄ et InVO₄-CrVO₄

(a) En portant les mélanges à $800^{\circ}C$, l'analyse par diffraction X des phases (poudre ou monocristal) n'a révélé la présence ni de solution solide du type $Cr_{1-x}Li_{3x}VO_4$, ni du composé $CrLi_3(VO_4)_2$ (16, 17); par contre, dans le rapport molaire $CrVO_4/Li_3VO_4$ égal à deux, des monocristaux de couleur jaune ont été extraits de la masse hétérogène; leurs paramètres cristallins sont voisins de ceux de LiVO₃ (Tableau I). Une étude similaire avec FeVO₄ conduit à des cristaux jaune-orangé; leur couleur plus prononcée et leur caractère peu hygroscopique par rapport aux monocristaux de LiVO3 nous ont incités à entreprendre une analyse structurale. Les paramètres cristallins sont: a = 10,78 Å; b =8,44 Å; c = 5,90 Å; $\beta = 110,98^{\circ}$; Z = 8; groupe d'espace C2/c. 798 réflexions ont été mesurées au diffractomètre quatre cercles (18). En utilisant les positions atomiques de LiVO₃ (20) et après corrections d'absorption et d'extinction, les indices résiduels sont: R = 0,039 et $R_W = 0,034$ pour 636 réflexions telles que Fo $\leq 3\sigma$ Fo (18). A partir de sections de Fourier-diffépositions rence, plusieurs atomiques, correspondant à une densité électronique non nulle, ont été attribuées à des ions Fe³⁺ avec un faible taux d'occupation; tous les essais d'affinement ont soit divergé soit conduit à des positions atomiques de Fe³⁺ entraînant des distances Fe-O trop courtes (18). La conclusion de cette étude, qui concerne aussi les cristaux obtenus avec CrVO₄ et InVO₄, est donc que la teneur en ions Fe³⁺ est trop faible pour être détectée par diffraction X; ces cristaux colorés et très peu hygroscopiques peuvent être symbolisés par LiVO₃: R^{3+} (R = In, Cr, Fe).

(b) Le recuit des poudres à $550^{\circ}C$ conduit à un mélange hétérogène montrant la présence majoritaire de Cr_2O_3 et LiVO₃. Aucun domaine de solution solide du type $Cr_{1-x}Li_{3x}VO_4$, analogue à celui mis en évidence avec In, n'a été trouvé, bien que $CrVO_4$ soit isotype et isostructural de InVO₄ (15). Quelle que soit la méthode de synthèse utilisée (16, 17), le composé $CrLi_3(VO_4)_2$ n'a pas été retrouvé.

(c) Système InVO₄-CrVO₄. Les deux constituants étant à fusion non congruente, l'étude des mixtes portés à fusion (1000°C) s'est avérée inutile car elle conduit à des mélanges hétérogènes où dominent les oxydes V_2O_5 , In_2O_3 , et Cr_2O_3 . Par contre, le recuit des poudres (860°C pendant 48 heures) permet la mise en évidence, par diffraction X, d'un large domaine biphasé séparant deux étroits domaines monophasés. Bien que $CrVO_4$ et $InVO_4$ soient isotypes et isostructuraux, il ne se forme pas de solution solide continue entre ces composés et la solubilité de $CrVO_4$ dans $InVO_4$ est plus grande (de l'ordre de 10% molaire) que celle de $InVO_4$ dans $CrVO_4$ (inférieure à 3% molaire) (18).

Ces résultats montrent la difficulté de remplacer les ions Cr^{3+} par des ions Li^+ et même par des ions voisins (par la charge et la taille) comme In^{3+} . Ils confirment l'étude infrarouge de ces deux vanadates InVO₄ et CrVO₄ qui montre une charpente de tétraèdres VO₄ du même type mais une nette différence dans la participation de l'élément trivalent à la structure, avec Cr³⁺ plus engagé dans les liaisons ioniques que In³⁺ (*18*, *22*).

Conclusion

Une solution solide continue In_{1-x} Li_{3x}VO₄ a été mise en évidence entre InVO₄ et In_{0,6}Li_{1,2}VO₄; elle peut être partagée en deux parties; dans la première, de InVO₄ à In_{0,67}Li_{0,99}VO₄, Li⁺ s'insère dans la structure de InVO₄ en se logeant dans les sites tétraédriques vacants; dans la seconde, au delà de In_{0,67}Li_{0,99}VO₄, Li⁺ occupe en plus des sites octaédriques laissés vacants par In³⁺. Aucune solution solide du type Cr_{1-x}Li_{3x}VO₄ n'a été trouvée, ni d'ailleurs le composé CrLi₃(VO₄)₂; ce fait peut être expliqué par la plus grande participation de Cr³⁺ à la cohésion de la structure $CrVO_4$, qui rend impossible son remplacement par Li⁺.

Références

- L. CHEN, L. WANG, G. CHE, ET Z. LI, Solid State Ionics 9-10, 149 (1983).
- 2. F. D'YVOIRE, M. PINTARD-SCREPEL, E. BRETEY, ET M. DE LA ROCHERE, Solid State Ionics 9–10, 851 (1983).
- 3. E. I. BURMAKIN, V. N. ALIKIN, ET G. K. STEPANOV, Izv. Akad. Nauk SSSR, Neorg. Mater. 20, 296 (1984).
- 4. M. PINTARD-SCREPEL, F. D'YVOIRE, ET E. BRETEV, Stud. Inorg. Chem. 3, 215 (1983).
- 5. W. H. BAUR ET T. OTHA, J. Solid State Chem. 44, 50 (1982).
- 6. P. G. BRUCE ET A. R. WEST, J. Solid State Chem. 44, 354 (1982).
- 7. A. R. RODGER, J. KUWANO, ET A. R. WEST, Solid State Ionics 15, 185 (1985).
- 8. P. G. BRUCE ET A. R. WEST, Mater. Res. Bull. 15, 379 (1980).
- 9. M. TOUBOUL ET P. TOLEDANO, J. Solid State Chem. 38, 386 (1981).
- M. TOUBOUL ET D. INGRAIN, J. Less-Common Met. 71, 55 (1980).
- 11. M. TOUBOUL ET A. POPOT, J. Less-Common Met. 115, 337 (1986).
- A. R. WEST ET F. GLASSER, J. Solid State Chem. 4, 20 (1972).
- 13. R. D. SHANNON ET C. CALVO, J. Solid State Chem. 6, 538 (1973).
- 14. M. TOUBOUL ET P. TOLEDANO, Acta Crystallogr. Sect B 36, 240 (1980).
- 15. R. C. L. MOONEY, Acta Crystallogr. 9, 113 (1956).
- 16. J. C. JOUBERT ET A. DURIF, Bull. Soc. Fr. Min. Crist. 86, 430 (1963).
- 17. G. BLASSE, J. Inorg. Nucl. Chem. 26, 1473 (1964).
- A. POPOT, Thèse de docteur-ingénieur, Université Pierre et Marie Curie, Paris (1984).
- 19. S. M. CHESHNITSKII, A. A. FOTIEV, ET L. L. SURAT, Zh. Neorg. Khim. 29, 2699 (1984).
- R. D. SHANNON ET C. CALVO, Canad. J. Chem. 51, 265 (1973).
- 21. H. Y.-P. HONG, Mater. Res. Bull. 13, 117 (1978).
- 22. M. TOUBOUL ET A. POPOT, Rev. Chim. Minér. 22, 610 (1985).